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Abstract
We present a unified derivation of covariant time derivatives, which transform
as tensors under a time-dependent coordinate change. Such derivatives are
essential for formulating physical laws in a frame-independent manner. Three
specific derivatives are described: convective, corotational and directional. The
covariance is made explicit by working in arbitrary time-dependent coordinates,
instead of restricting to Eulerian or Lagrangian coordinates. The commutator of
covariant time and space derivatives is interpreted in terms of a time-curvature
that shares many properties of the Riemann curvature tensor, and reflects
nontrivial time dependence of the metric.

PACS numbers: 83.10.Bb, 05.45.-a, 47.50.+d

1. Introduction

In physics, choosing an appropriate coordinate system can make the difference between a
tractable problem and one that defies analytical study. In fluid dynamics, two main types of
coordinate are used, each representing a natural setting in which to study fluid motion: the
Eulerian coordinates, also known as the laboratory frame, are time independent and fixed in
space; in contrast, the Lagrangian (or material) coordinates are constructed to move with fluid
elements. In between these extremes, other types of coordinate are used, such as rotating
coordinates in geophysical fluid dynamics. Such coordinates usually have a nontrivial spatial
and temporal dependence.

The situation becomes more complicated when dealing with moving surfaces: here the
metric itself has intrinsic time dependence. This time dependence incorporates the strain
imposed on a 2D surface flow as the surface deforms. To properly formulate fluid equations
on thin films and other surfaces, one needs a covariant description, that is, a description of the
building blocks of equations of motion—spatial and temporal derivatives—that obey tensorial
transformation laws.
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There are other reasons than inherent deformation of the space to introduce a time-
dependent, nontrivial metric. For instance, the advection–diffusion equation can have an
anisotropic, time-dependent diffusion tensor, perhaps arising from some inhomogeneous
turbulent process. In that case, it is advantageous to use the diffusion tensor as a metric,
for then the characteristic directions of stretching, given by the eigenvectors of the metric
tensor in Lagrangian coordinates, correspond to directions of suppressed or enhanced diffusion
associated with positive or negative Lyapunov exponents, respectively [1, 2].

Local physical quantities can be viewed as tensors (scalars, vectors, or higher-order
tensors) evaluated along fluid trajectories. For instance, we may be interested in how the
temperature (scalar) of a fluid element varies along a trajectory, or how the magnetic field
(vector) associated with a fluid element evolves. Characterizing the evolution of these tensors
in complicated coordinates is again best done using some form of covariant time derivative,
also called an objective time derivative.

The covariant spatial derivative is a familiar tool of differential geometry [3–5]. The
emphasis is usually on covariance under coordinate transformations of the full spacetime. In
fluid dynamics and general dynamical systems, however, the time coordinate is not included in
the metric (though the metric components may depend on time), and the required covariance is
less restrictive: we seek covariance under time-dependent transformations of the coordinates,
but the new time is the same as the old and does not depend on the coordinates. Time derivatives
lead to non-tensorial terms because of time-dependent basis vectors—the same reason that
ordinary derivatives are not covariant.

There are many ways of choosing a covariant time derivative. The most familiar is the
convective derivative introduced by Oldroyd [6, 7] in formulating rheological equations of
state. This derivative was then used by Scriven [8] to develop a theory of fluid motion on
an interface. The convective derivative of a tensor is essentially its Lie derivative along the
velocity vector. In spite of its economical elegance, the convective derivative has drawbacks.
Firstly, unlike the usual covariant spatial derivative, it is not compatible with the metric tensor.
A compatible operator vanishes when acting on the metric. Because the covariant derivative
also has the Leibniz property, compatibility allows the raising and lowering of indices ‘through’
the operator. This is convenient for some applications [1], and implies that the equation of
motion for a contravariant tensor has the same form as the covariant one. A second drawback
of the convective derivative is that it involves gradients of the velocity, and so is not directional.
The commutator of the convective derivative and the spatial derivative thus involves second
derivatives of the velocity, requiring it to be at least of class C2.

A second common type of derivative is the corotational or Jaumann derivative (see [9]
and [10, p 342], and references therein), where the local vorticity of the flow is incorporated
into the derivative operator. The corotational derivative is compatible with the metric, but like
the convective derivative it depends on gradients of the velocity.

The third type of derivative we discuss is a new, time-dependent version of the usual
directional derivative along a curve used to define parallel transport [3–5]. The curve here is
the actual trajectory of a fluid particle, with tangent vector given by the Eulerian velocity field.
The directional derivative does not depend on gradients of the velocity field. The concept of
time-dependent parallel transport can be introduced using this derivative, and is equivalent to a
covariant description of advection without stretching. A directional derivative was introduced
in the context of fluid motion by Truesdell [11, p 42], but it does not allow for time dependence
in the coordinates or metric. (Truesdell calls it the material derivative because of its connexion
to fluid elements.)

In this paper, we present a unified derivation of these different types of covariant time
derivative. We do not restrict ourselves to Eulerian and Lagrangian coordinates, as this
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obscures the general covariance of the theory: both these descriptions lack certain terms
that vanish because of the special nature of the coordinates. From a dynamical system defined
in some Eulerian frame, we transform to general time-dependent coordinates. We then find
a transformation law between two time-dependent frames with no explicit reference to the
Eulerian coordinates. The Eulerian velocity of the flow is not a tensor, but the move to
general coordinates allows the identification of a velocity tensor that transforms appropriately
(section 2). We also derive a time evolution equation for the Jacobian matrix of a coordinate
transformation between two arbitrary time-independent frames. This time evolution equation
facilitates the construction of the covariant time derivative in section 3. After a discussion of
the rate-of-strain tensor in section 4, we present in section 5 the three types of covariant time
derivative mentioned above: convective, corotational and directional.

Section 6 addresses a fundamental issue when dealing with generalized coordinates: the
problem of commuting derivatives. In manipulating fluid equations it is often necessary to
commute the order of time and space derivation. When commuting two covariant spatial
derivatives, the Riemann curvature tensor must be taken into account. Similarly, when
commuting a covariant time derivative with a spatial derivative, there arises a tensor we call
the time-curvature. This tensor vanishes for sufficiently simple time dependence of the metric,
and satisfies many properties similar to the Riemann tensor.

Throughout this paper, we will usually refer to the ‘fluid’, ‘fluid elements’ and ‘velocity’,
but this is merely a useful concretion. The methods developed apply to general dynamical
systems where the velocity is some arbitrary vector field defined on a manifold. The covariant
time derivative still refers to the rate of change of tensors along the trajectory, but the tensors
do not necessarily correspond to identifiable physical quantities. For example, the covariant
time derivative is useful in formulating methods for finding Lyapunov exponents on manifolds
with nontrivial metrics [1].

2. Time-dependent coordinates

We consider the dynamical system on an n-dimensional smooth manifold U ,

ẋ = v(t, x) (1)

where the overdot indicates a time derivative and v is a differentiable vector field. (For
simplicity, we restrict ourselves to a given chart.) A solution x(t) defines a curve C in U with
tangent v. We view the x as special coordinates, called the Eulerian coordinates, and denote
vectors expressed in the Eulerian coordinate basis {∂/∂xi} by the indices i, j, k.

A time-dependent coordinate change z(t, x) satisfies

ża(t, x(t)) = ∂za

∂xk
vk +

∂za

∂t

∣∣∣∣
x

(2)

where the ∂/∂t |x is taken at constant x. Here and throughout the rest of the paper, we assume
the usual Einstein convention of summing over repeated indices. We denote vectors expressed
in the general coordinate basis {∂/∂za} by the indices a, b, c, d. We use the shorthand notation
that the index on a vector X characterizes the components of that vector in the corresponding
basis: thus Xa and Xi are the components of X in the bases {∂/∂za} and {∂/∂xi}, respectively.
The components Xa and Xi are also understood to be functions of z and x, respectively, in
addition to depending explicitly on time.

Defining v := ż, we can regard equation (2) as a transformation law for v,

va = ∂za

∂xk
vk +

∂za

∂t

∣∣∣∣
x

. (3)
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This last term prevents v from transforming like a tensor. (We refer the reader to standard texts
in differential geometry for a more detailed discussion of tensors [3–5].)

Now consider a second coordinate system z̄(t, x), also defined in terms of x. We can use
equation (3) and the chain rule to define a transformation law between z and z̄,

va − ∂za

∂t

∣∣∣∣
x

= ∂za

∂z̄ā

(
vā − ∂z̄ā

∂t

∣∣∣∣
x

)
. (4)

Any explicit reference to the coordinates x has disappeared (except in ∂/∂z|x). Equation (4) is
a transformation law between any two coordinate systems defined in terms of x, and implies
that va − (∂za/∂t)|x transforms like a tensor. This suggests defining the tensor

V a := va − ∂za

∂t

∣∣∣∣
x

(5)

which we call the velocity tensor. The velocity tensor is the absolute velocity of the fluid v

with the velocity of the coordinates subtracted.
In addition to the coordinates x, characterized by ∂xi/∂t |x = 0, we introduce another

special set of coordinates, the Lagrangian coordinates a, defined by ȧ = 0. We denote
vectors expressed in the Lagrangian coordinate basis {∂/∂aq} by the indices p and q. From
equation (3), we have

vq(t, x(t)) = ∂aq

∂xk
vk +

∂aq

∂t

∣∣∣∣
x

= 0. (6)

The initial conditions for a are chosen such that Eulerian and Lagrangian coordinates coincide
at t = 0: a(0, x) = x.

Lagrangian and Eulerian coordinates have the advantage that the time evolution of their
Jacobian matrix is easily obtained. The Jacobian matrix ∂xi/∂aq satisfies [6]

d

dt

(
∂xi

∂aq

)
= ∂vi

∂xk

∂xk

∂aq
. (7)

By using the identity

d

dt

(
∂xi

∂aq

∂ap

∂xi

)
= d

dt

(
δq

p
) = 0

which follows from the chain rule, and using the Leibniz property and equation (7), we find

d

dt

(
∂aq

∂xi

)
= −∂aq

∂xk

∂vk

∂xi
.

The Leibniz property can be used again to find the time evolution of the Jacobian matrix of
two arbitrary time-dependent transformations z(t, x) and z̄(t, x),

d

dt

(
∂za

∂z̄ā

)
= ∂va

∂zb

∂zb

∂z̄ā
− ∂za

∂z̄b̄

∂vb̄

∂z̄ā
. (8)

All reference to Eulerian and Lagrangian coordinates has disappeared from equation (8); this
equation is crucial when deriving the covariant time derivative of section 3.

3. The covariant time derivative

The standard time derivative operator, which we have been denoting by an overdot, is defined
for a vector field X as

Ẋa := ∂Xa

∂t

∣∣∣∣
z

+
∂Xa

∂zb
vb (9)
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where we recall that ż = v. The first term is the change in X due to any explicit time
dependence it might have; the second term is the change in X due to its dependence on z.
The time derivative is not covariant, because a time-dependent change of basis will modify the
form of equation (9).

We define the covariant time derivative D by

DXa := Ẋa + αa
b X

b (10)

where the αa
b are time-dependent quantities that are chosen to make DXa covariant. In order

that the operator D have the Leibniz property, and that it reduce to the ordinary derivative (9)
when acting on scalars, we require

DYa = Ẏa − αb
a Yb

when acting on a 1-form Y . When D acts on mixed tensors of higher rank, an α must be
added for each superscript, and one must be subtracted for each subscript. We refer to the α

as connexions, by analogy with the spatial derivative case.
By enforcing covariance of D, we can derive a general expression for αa

b. Since X is a
tensor, we can write

DXa = D
(
∂za

∂z̄ā
Xā

)

= d

dt

(
∂za

∂z̄ā

)
Xā +

∂za

∂z̄ā
Ẋā +

∂zb

∂z̄ā
Xā αa

b

= ∂za

∂z̄ā
DXā

because DXa is by definition covariant. Hence, we require the α to transform as

αā
b̄ = ∂z̄ā

∂za

∂zb

∂z̄b̄
αa

b +
∂z̄ā

∂zc

d

dt

(
∂zc

∂z̄b̄

)
. (11)

The first term in (11) is the usual tensorial transformation law. The second term implies that α
is not a tensor, and arises because of the time dependence.

Inserting the evolution equation (8) into (11), we can rewrite the transformation law for α
as

αā
b̄ +

∂vā

∂z̄b̄
= ∂z̄ā

∂za

∂zb

∂z̄b̄

(
αa

b +
∂va

∂zb

)
(12)

implying that αa
b + (∂va/∂zb) transforms like a tensor. Hence,

αa
b = −∂va

∂zb
+ Ha

b (13)

where H is an arbitrary tensor. Equation (13) is the most general form of the connexions α.
In section 5, we consider three convenient choices of the tensor H. But first in section 4

we examine the action of the covariant derivative on the metric tensor.

4. The rate-of-strain tensor

Our development so far has not made use of a metric tensor. We now introduce such a tensor,
specifically a Riemannian metric g : TU × TU → R. The components gab of the metric are
functions of z and t , but the indices a and b run over the dimension n of TU , and so do not
include a time component.
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It is informative to consider the derivative of the metric tensor,

Dgab = ġab − αc
a gbc − αc

b gac

= ∂gab

∂t

∣∣∣∣
z

+
∂gab

∂zc
vc + gac

∂vc

∂zb
+ gbc

∂vc

∂za
− (Hab + Hba)

where we have used the metric to lower the indices on H. We define the intrinsic rate-of-strain
or rate-of-deformation tensor γ [7, 8] as

γab = 1

2

[
gac∇bv

c + gbc∇av
c +

∂gab

∂t

∣∣∣∣
z

]
. (14)

Here we denote by ∇a the covariant derivative with respect to za ,

∇bX
a := ∂Xa

∂zb
+ �a

bc X
c.

The Riemann–Christoffel connexions are defined as [4, 5]

�a
bc := 1

2
gad

(
∂gbd

∂zc
+
∂gcd

∂zb
− ∂gbc

∂zd

)
(15)

whence the identity

gac�
c
bd + gbc�

c
ad = ∂gab

∂zd

holds. The covariant time derivative of the metric can thus be rewritten

1
2Dgab = γab − HS

ab (16)

where HS := 1
2 (Hab + Hba) denotes the symmetric part of H.

The rate-of-strain tensor γ describes the stretching of fluid elements. The time
derivative of the metric in its definition (14) is necessary for covariance under time-dependent
transformations; the term describes straining motion that is inherent to the space, as embodied
by the metric. The trace of the rate-of-strain tensor is a scalar

γ c
c = gac γac = ∇c v

c +
1

2

∂

∂t

∣∣∣∣
z

log |g| (17)

where |g| is the determinant of gab and we have used the identity

gac ∂gac

∂t

∣∣∣∣
z

= ∂

∂t

∣∣∣∣
z

log |g|. (18)

The rate-of-strain tensor can be decomposed as

γab = γ ′
ab +

1

n
γ c

c gab (19)

where γ ′
ab is traceless and represents a straining motion without change of volume,

and γ c
c gab/n is an isotropic expansion. We see from the trace (17) that for a time-dependent

metric there can be an isotropic expansion even for an incompressible flow, if ∂|g|/∂t |z �= 0.
Note also that in Lagrangian coordinates (characterized by vq = 0), the rate-of-strain tensor
reduces to

γpq = 1

2

∂gpq

∂t

∣∣∣∣
a

so that the deformation of the space is contained entirely in the metric tensor.
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Table 1. Comparison of the equation of motion for the components of an advected and stretched
vector fieldB. The equations for the covariant and contravariant components of DcB differ because
of the lack of compatibility with the metric.

Type Contravariant components Covariant components

Convective DcB
a = 0 DcBa = 2Bc γ

c
a

Corotational DJ B
a = Bc γc

a DJ Ba = Bc γa
c

Directional DvB
a = Bc (∇c V

a + κc
a) DvBa = Bc (∇c Va + κa

c)

5. Three covariant derivatives

As mentioned in section 2, the requirement of covariance only fixes the covariant time derivative
up to an arbitrary tensor (equation (13)). That tensor may be chosen to suit the problem at
hand, but there are three particular choices that merit special attention. In section 5.1 we treat
the convective derivative, and in section 5.2 we examine two types of compatible derivative:
corotational and directional.

5.1. The convective derivative

The choice H ≡ 0 is equivalent to the convective derivative of Oldroyd [6,7]. The connexion,
equation (13), reduces to the simple form

αa
b = −∂va

∂zb
.

The convective derivative Dc acting on a vector Xa is thus

DcX
a = ∂Xa

∂t

∣∣∣∣
z

+
∂Xa

∂zb
vb − ∂va

∂zb
Xb. (20)

When acting on a contravariant vector Xa , as in equation (20), Dc is sometimes called the
upper convected derivative [9]; Dc acting on a covariant vector Ya , DcYa = Ẏa + (∂vb/∂za) Yb,
is then called the lower convected derivative.

In general, for an arbitrary tensor T ,

DcT = ∂T
∂t

∣∣∣∣
z

+ LvT

where LvT is the Lie derivative of T with respect to v [4, 5]. In Lagrangian coordinates, we
have vq ≡ 0, so the convective derivative reduces to

DcX
q = ∂Xq

∂t

∣∣∣∣
a

.

The convective derivative is not compatible with the metric: from equation (16), the
metric’s derivative is

1
2Dcgab = γab

which does not vanish, unless the velocity field is strain-free.
The convective derivative is ideally suited to problems of advection with stretching, where

a tensor is carried and stretched by a velocity field. Table 1 summarizes the form of the
equation for advection with stretching of a vector field B (B is ‘frozen in’ the flow [12])
for the three different types of derivative introduced here. The equation for the contravariant
component Ba is simply DcB

a = 0, but the equation for the covariant component Ba = gac B
c

is DcBa = 2Bc γ
c
a . These two equations differ because the operator Dc is not compatible with

the metric.
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5.2. Compatible derivatives

Another way to fix H is to require that the operator D be compatible with the metric, that
is, Dgab = 0. This allows us to raise and lower indices through the operator D, a property
possessed by the covariant spatial derivative. From equation (16), the requirement Dgab = 0
uniquely specifies the symmetric part of Hab, so that HS = γ . Using equations (13) and (14),
we then find

αab = gac �
c
bd v

d +
1

2

∂gab

∂t

∣∣∣∣
z

− 1

2

[
gac∇bv

c − gbc∇av
c
]

+ HA
ab (21)

where HA := 1
2 (Hab − Hba) is the antisymmetric part of H.

We define the antisymmetric vorticity tensor

ωab := 1

2

[
gac

∂V c

∂zb
− gbc

∂V c

∂za

]
(22)

and the symmetric coordinate rate-of-strain tensor

κab := 1

2

[
gac∇b

(
∂zc

∂t

∣∣∣∣
x

)
+ gbc∇a

(
∂zc

∂t

∣∣∣∣
x

)
+
∂gab

∂t

∣∣∣∣
z

]
. (23)

In Eulerian coordinates, we have κij = 1
2 (∂gij /∂t)|x . The compatible connexion (21) can be

rewritten

αab = gac �
c
bd v

d − gac∇b

(
∂zc

∂t

∣∣∣∣
x

)
+ κab − ωab + HA

ab. (24)

Since HA
ab is antisymmetric, we can use it to cancel the vorticity, or we can set it to zero. The

two choices are discussed separately in sections 5.2.1 and 5.2.2.
The decomposition of the velocity gradient tensor ∇V into the rate-of-strain and vorticity

tensors has the form

gac ∇bV
c = [

γab − κab
]

+ ωab (25)

in general time-dependent coordinates. When the coordinates have no time dependence, the
tensor κ vanishes, as does the derivative ∂zc/∂t |x , and we recover the usual decomposition
of the velocity gradient tensor into the rate-of-strain and the vorticity. We can think of κ as
the contribution to the rate-of-strain tensor that is due to coordinate deformation and not to
gradients of the velocity field. However, the term ∂g/∂t |z is a ‘real’ effect representing the
deformation due to a time-dependent metric, and is thus also included in the definition of the
intrinsic rate-of-strain tensor, γ , defined by equation (14).

In Euclidean space, when the rate-of-strain tensor γ vanishes everywhere we are left
with rigid-body rotation at a constant rate given by ω [7]. With an arbitrary metric and time-
dependent coordinates the situation is not so simple: the very concept of rigid-body rotation
is not well defined. Hence, even when γ ≡ 0, we cannot expect to be able to solve for v in
closed form.

5.2.1. The corotational derivative. In this instance we choose the antisymmetric part HA
ab

to be zero. We call the resulting covariant derivative corotational, and denote it by DJ (the
subscript J stands for Jaumann). The appellation ‘corotational’ really applies to the Euclidean
limit, gij = δij , for which the compatible connexion equation (21) reduces to αij = −ωij . It
is then clear that the covariant derivative is designed to include the effects of local rotation of
the flow, as embodied by the vorticity (see [9] and [10, p 342], and references therein). The
derivative (21) with HA ≡ 0 is thus a generalization of the corotational derivative to include
the effect of time-dependent non-Euclidean coordinates.
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In table 1, we can see that, written using DJ , the equation for advection with stretching
of a vector Ba has the rate-of-strain tensor on the right-hand side. The ‘rotational’ effects are
included in DJ , hence the terms that remain include only the strain.

5.2.2. The directional derivative. Another convenient choice is to set HA
ab = ωab, thus

cancelling the vorticity in equation (24). The resulting covariant time derivative then has
the property that, in the absence of any explicit time dependence, it reduces to the covariant
derivative along the curve C [4, 5], or directional derivative, where C is the trajectory of the
dynamical system in the general coordinates z (section 2). The derivative is called directional
because it only depends on v, and not gradients of v.

The form of the equation for advection with stretching of a vector Ba written using Dv is
shown in table 1. The ∇V term on the right-hand side is the ‘stretching’ term [12] (called vortex
stretching when B is the vorticity vector [13]). The κ term represents coordinate stretching,
and does not appear in Euclidean space with time-independent coordinates.

Because the directional derivative depends only on v and not its gradients, it can be
used to define time-dependent parallel transport of tensors. A vector X is said to be parallel
transported along v if it satisfies Dv X = 0, or equivalently

∂Xa

∂t

∣∣∣∣
z

+ vc ∇cX
a = Xc

[
∇c

(
∂za

∂t

∣∣∣∣
x

)
− κa

c

]
. (26)

This can be readily generalized to tensors of higher rank. In Euclidean space, with time-
independent coordinates, the right-hand side of equation (26) vanishes, leaving only advection
of the components of X. Thus, parallel transport is closely related to advection without
stretching; equation (26) is the covariant formulation of the passive advection equation.

6. Time-curvature

A hallmark of generalized coordinates is the possibility of having nonzero curvature. The
curvature reflects the lack of commutativity of covariant derivatives, and is tied to parallel
transport of vectors along curves [4, 5]. An analogous curvature arises when we try to
commute D and ∇, respectively the covariant time and space derivatives:

∇a[DXb] − D[∇aX
b] = Hc

a ∇cX
b + gbc

[∇a (Hcd − γcd − ωcd) + RcdaeV
e + 1

2 Scda
]
Xd

(27)

where the time-curvature tensor is defined by

Sabc := ∇a

[
∂gcb

∂t

∣∣∣∣
z

+ gbe∇c

(
∂ze

∂t

∣∣∣∣
x

)]
− ∇b

[
∂gca

∂t

∣∣∣∣
z

+ gae∇c

(
∂ze

∂t

∣∣∣∣
x

)]
+ Rabce

∂ze

∂t

∣∣∣∣
x

(28)

and the Riemann curvature tensor R obeys [5]

(∇c∇d − ∇d∇c) X
a = Ra

bcd X
b. (29)

The time-curvature tensor satisfies Sabc = −Sbac, and the Riemann curvature tensor
satisfies Rabcd = −Rbacd , Rabcd = Rcdab.

Even for trivial (Euclidean) coordinates, we do not expect D and ∇ to commute, because of
the derivatives of v in the ∇a (Hcd − γcd − ωcd) term of equation (27). Note that the coordinate
rate-of-strain tensor κ , defined by equation (23), does not appear in equation (27).
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The ∇X term in equation (27) vanishes for the convective derivative of section 5.1, since
then H ≡ 0. For the directional derivative of section 5.2.2, we have Hcd = γcd + ωcd , so the
commutation relation simplifies to

∇a[DXb] − D[∇aX
b] = (γcd + ωcd)∇cX

b + gbc
[
RcdaeV

e + 1
2 Scda

]
Xd

which does not involve second derivatives of v. For the corotational derivative of section 5.2.1,
with Hcd = γcd , no terms drop out.

The terms involving H in the commutation relation (27) reflect properties of the velocity
field v. In contrast, the tensors R and S embody intrinsic properties of the metric tensor g. The
Riemann tensorR is nonzero when the space is curved. The time-curvature tensor S is new and
has characteristics that are analogous to the Riemann tensor. It satisfies a cyclic permutation
identity,

Sabc + Scab + Sbca = 0 (30)

which corresponds to the first Bianchi identity of the Riemann tensor. The time-curvature does
not appear to satisfy an analogue of the second Bianchi identity.

The property Sabc = −Sbac, together with the Bianchi identity (30), imply that S has
n(n2 − 1)/3 independent components, compared with the n2(n2 − 1)/12 components of R,
where n is the dimension of the space. Thus one-dimensional manifolds have vanishing S

and R. For 1 � n � 3, S has more independent components than R; for n = 4, they both
have 20. For n > 4, R has more independent components than S.

The time-curvature S vanishes for a time-independent metric and coordinates. It also
vanishes for a metric of the form gij (t, x) = β(t) hij (x), where h is a time-independent metric
and x are the Eulerian coordinates. It follows from its tensorial nature that the time-curvature
must then vanish in any time-dependent coordinates. In general, it is convenient to find S in
Eulerian coordinates (where ∂x/∂t |x = 0),

Sijk := ∇i

(
∂gkj

∂t

∣∣∣∣
z

)
− ∇j

(
∂gki

∂t

∣∣∣∣
z

)
(31)

and then transform Sijk to arbitrary time-dependent coordinates using the tensorial law.

7. Discussion

In this paper, we aimed to provide a systematic framework to handle complicated time-
dependent metrics and coordinate systems on manifolds. The explicit form of the relevant
tensors is often fairly involved, but the advantage is that they can be evaluated in time-
independent Eulerian coordinates and then transformed to arbitrary coordinate systems using
the usual tensorial transformation laws.

The covariance of the time derivatives is made explicit by using arbitrary time-dependent
coordinates. The results for the Eulerian coordinates xi are recovered by setting ∂xi/∂t |x = 0,
and those for the Lagrangian coordinates aq by setting vq = 0.

The introduction of the time-curvature tensor allows us to treat the temporal dependence of
the metric tensor in a manner analogous to its spatial dependence. For simple time dependence,
the time-curvature vanishes, such as for the case of a time-independent metric multiplied by a
time-dependent scalar. As for the (spatial) Riemann curvature tensor, the components of the
time-curvature can be computed for a given metric, and then inserted whenever a temporal and
spatial derivative need to be commuted.

We have only addressed the kinematics of fluid motion. The dynamical equations relating
the rate of change of quantities to the forces in play have not been discussed (see [6–9]),
and depend on the specifics of the problem at hand. Nevertheless, covariant time derivatives
provide a powerful framework in which to formulate such dynamical equations.
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